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DEVELOPMENT OF MICHELL MINIMUM WEIGHT STRUCTURES
By Dhanjoo N. Ghista and Meyer M. Resnikoff

Ames Research Center
SUMMARY

The Michell strain criterion is used to develop minimum weight structures
to equilibrate some interesting force systems of significance to aeronautics
and the space technology. Michell prescribed a strain criterion for the
members of a minimum volume structure (i.e., a structure having the minimum
amount of material) to equilibrate a given force system.

The research work comtributory to this paper is divided into three inde-
pendent sections. In the first section, a theorem is presented on the super-
position of Michell structures and applied to develop optimum structures for
two basic force systems. With this theorem a force system that does not lend
itself to a unique solution (i.e., a unique optimum structure) may be treated
by resolving it into two or more systems, determining the solutions to the
resolutes, and then superposing them to give the solution for the total force
system. The theorem shows that the solution obtained by this superposition
method satisfies the Michell optimum structure.

In the second section a solution is obtained to the governing equations
developed by Hemp for the form of an optimum structure satisfying the Michell
strain criterion condition in two dimensions. This solution gives a unique
system of coordinate curves for the member layout of the Michell structure.
This system can be employed to offer optimum structures for a variety of
force systems acting on plane rectangular and curvilinear domains.

In the third section two well-known orthogonal systems of curves - the
dipolar and the spherical - are selected for member layout of Michell struc-
tures. The volume of a Michell structure is a function of the displacements
of the points of application of the applied forces; hence for the dipolar and
spherical coordinate systems, the generalized displacements are obtained for
the Michell strain pattern. Some interesting loading systems result when
the two coordinate systems are used in developing Michell optimum structures.
The dipolar system gives rise to a structure which could conceivably be
employed for an entry body that had a displaced center of gravity with respect
to the geometric center. Another application of this system is a structure
which distributes a concentrated load over a wide bearing atrea, thereby reduc-
ing the possibility of large deformations of the material. An application of
the spherical system gives rise to a spherical prestressed structure, under a
suitable force system.



INTRODUCT ION

In aeronautics structures are needed that can withstand a given load
system and that have a minimum volume of material. TFor a given load system
this objective is more easily achieved if the probability of failure is
allowed to be small instead of zero (ref. 1). However, the development and
application of the theory of optimum structures, which is the subject of this
paper, is strictly a problem in structural mechanics; hence, in this case,
the idealized version of failure (of probability zero) is adopted.

For research in the field of structural optimization, the structural
design is usually represented by design parameters of the appropriate shape
and size, the merit function is expressed in terms of these parameters and
minimized with respect to them, within limits of the constraints, by using
nonlinear programming techniques (see ref. 2). On the other hand, a theory
based on displacement or strain criterion could be used to find the structure
with the absolute minimum volume for the given load system. The form of the
structure could be developed as a consequence. Such an approach gives the
absolute minimum volume structure for the given load system. Michell's paper
(ref. 3) inspired research along these lines. For a gilven system of self-
equilibrating forces, Michell has laid down a deformation criterion which if
satisfied by a framework will give a structure of a minimum volume, that is,
of a minimum amount of material. Cox (ref. L4) drew the attention of engineers
to Michell's results and, by contributing to the application of these results,
championed the cause of optimum structural design. Hemp (ref. 5) has incor-
porated the Michell criterion of strain into a two-dimensional theory of
optimum frameworks and has developed some special forms. Further, Michell's
theorem has been applied to develop optimum frameworks for some useful
practical load systems (see refs. 6, 7, 8, and 9).

The present paper is presented in three independent parts. In the first
part a theorem is presented on the superposition of Michell structures. This
theorem is then used to develop structures for two force systems. In the
second part, solutions are presented to the governing equations developed by
Hemp for the form of the minimum volume framework. The resulting structure
is then developed, that is, the coordinate curves along which the members lie
are laid out. Tt is then shown how certain arbitrary functions of the solu-
tion can be adjusted to match a given external force system. In the third
part, two systems of well-known orthogonal coordinate curves, namely, the
dipolar and the spherical coordinate systems, are selected for the layout of
members of the Michell optimum structures. The corresponding strain-
displacement equations incorporating the Michell strain criterion are solved
to give the displacements in terms of corresponding curvilinear coordinates.
Some force systems are illustrated as applications of the two coordinate
systems in the development of Michell optimum structures.
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SYMBOLS

unit arc lengths along o and B members
arc lengths along o and B members

magnitude of strain in any member of a Michell optimum
structure

normal strains in the curvilinear system (o,B,y)
shear strains in the curvilinear system (a,B,y)
forces acting at the points of application ?i
forces per unit length parallel to the o and B members
thickness of the o,3 members

displacements corresponding to the curvilinear system («,B)
displacements corresponding to the curvilinear system (a,B,y)
volume of a Michell optimum structure

curvilinear coordinates

allowable stress in compression

allowable stress in tension

angles made by the o and B curves with the x axis

MICHELL CRITERION OF STRATIN

The Michell criterion of strain for a minimum volume framework to
equilibrate a given force system states that the members of the structure must
all be strained by the same amount (e), the sign depending on the sign of the
axial stress carried by the member.

The volume V
with allowable stresses
given by %see ref. 3)

forces

of the minimum volume framework to carry a system of
Oa and o4 in compression and tension is
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where T:; denotes the points of applications of the forces ﬁi and §£ denote
the displacements of these points.

This deformation prescribed by Michell imposes certain restrictions upon
the layout of the members of a Michell structure. At a node of this frame-
work, the members follow the principal directions of strain. If members
carrying loads of the same sign meet at a node, there is no restriction on
their layout since for this case the Michell deformation is a pure dilatation
or contraction and the principal axes of strain are indeterminate. If at a
node, members carrying loads of opposite sign meet, these members must be at
right angles. The members of this class of frames form curves of orthogonal

systems.

SUPERPOSITION OF MICHELIL. STRUCTURES

In this section the indeterminacy of Michell structures is discussed.
Then the utility of superposing Michell structures is presented. A theorem is
presented on the superposition of Michell structures which relates the volume
of the superposed structures for the corresponding force systems to the volume
of the structure for the resultant of the force systems. The usefulness of
the superposition theorem is demonstrated by means of two examples.

Indeterminacy of Michell Structures

In the development of a Michell structure to equilibrate a given force
system, the geometry of the layout of the members is also unknown in addition
t0 the forces in the members. The problem of determining the sizes of the
members, for an optimum member layout, to equilibrate a given force system
involves the solution of the following equations: (i) equilibrium equations
obtained by considering the equation of an element do by dB, where o,B are
the curvilinear coordinates; (ii) equations of compatibility of strain in the
curvilinear coordinate system; and (iii) equilibrium conditions along the
boundary. Once the members' sizes are known, the forces in the members are
obtained by specifying the allowable stress in the members.

It is seen that, for Michell structures, the areas of the members and
hence the forces in the members for an allowable stress are obtained from the
deformation pattern or kinematics. For a statically determinate structure,
the determination of member forces for a given external force system requires
the solution of only the equilibrium equations. A Michell structure is not
statically determinate since, in addition to equilibrium equations, the
deformation equations are needed to determine the forces in the members.



Superposition

The strain pattern prescribed by Michell for a minimum volume framework
is such that solutions satisfying the Michell criterion of strain exist only
for a few special cases. It often happens that it 1s not possible to find an
optimum framework to equilibrate a force system. However, if the force system
were resolved into component force systems, optimum frameworks could be deter-
mined for the component force systems. Suppose a composite structure is
obtained by the superposition of the constituent Michell structures while con=-
tinuity of displacements between the superposed structures is insured. To
determine whether this composite structure can be used as the optimum struc-
ture for the given loading in the absence of a unique solution for that load
system, a theorem 1s proposed which states that the volume of the composite
structure 1s the same as the volume of the unique structure for the given load
system. This theorem justifies the use of the composite structure as the
optimum structure for the load system considered. The theorem will now be
enunciated, proved, and applied to two force systems.

Theorem: Let F,4, 1 =1, 2, 3, denote a self-equilibrating system of
forces acting at points Ti, i =1, 2, 3, and let V3 denote the volume of
the Michell structure S; which equilibrates the force system F;;. Let
Fz3, 3 =1, 2, 4, denote another self-equilibrating force system acting at
points ri, j =1, 2, &, and Vs denote the volume of the Michell structure
Sz vhich equilibrates the force system Fgzj. Let Fgk, k =1, 2, 3, b,
represent the resultant of the force systems Fll and FZJ acting at points
rk, k=1,2, 3, 4, and let Vs denote the volume of the Michell structure
Sz which equilibrates the force system Fsk. If a structure be obtained by
the superposition of the two Michell structures S3 and So such that there is
a compatibility of strain between the two superposed structures (i.e., there
is a continuity of displacements at nodes common to both the structures), then
the volume of this composite structure will be Vi + Vo. It is proposed,
then, that Vs =V, + Vs,

Proof: Consider a domain D containing the points T, Tz, Tg, T4. In
this domain an orthogonal coordinate system of curves (or systems of curves,
provided there is contlnulty of displacement along the lines of Junction)
links points T3, To, T's, ra. The Michell strain pattern is now imposed on
this coordinate system so that the strains along the orthogonal directions are
te and the Shear straln is Zero. Let the displacements at the points T,
To, Tm, Ta be Vi, Vo, Vg, Va, respectively.

Now at the points T3, 1 = 1, 2, 3, the system ¥Fii 1is made to act. The
corresponding Michell structure Si, to equilibrate the system F,i, will con=-
sist only of those members of the coordinate system that transmit forces; the
remaining members of the coordinate system can be said to have zero area and,
hence, do not form part of the structure S;. Then the volume V; of 83
is (from Eq. (1)),
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Next, at points T:, j = 1, 2, 4, the system Fzj 1is made to act. The
corresponding Michell structure Sgz, to equilibrate the systenm Fo LE will
again consist only of those members that transmit forces. The volume Vs of
the structure Sz 1is given by

o, +0 T o, -0
S Fo. o (L)t ¢ Foi - T
Ve = 2040, Z F2; <e> 20,0, Z Fay = 15 (3)

The system Fazx, k =1, 2, 3, 4, is now made to act at the points ?k.
The volume Vg of the corresponding Michell structure Sg, to equilibrate the
system Fagx, is given by

o, +0C 5T g, - C
t c = Vk t c = -
= ————— F . — - ———— F .
s " 250 Z ak < 2os Z a T (W)
c t e
k=l;2;3;4 k.=l;2;3,4-'

Now since Fa 1is the resultant of systems ¥ii and Foj, it follows that

Fok = Fai + Faj (5)
that is, 5

Fzy = Fa1 + Fo1

Fap = Fip + Fop ? (6)

Tj_'_33 = F13

Fgs = Fou J

Structures S and Sz _have common points T, and To at which they have equal
displacements v and ve. Hence the structures S; and Sp can be superposed.
The resulting composite structure will have the volume (Vi + Vo). From equa-
tions (2), (3), (4), and (5), it is seen that the volume Vz of the Michell
structure S5 which equilibrates the resultant of the force systems Fii and
-F—ZJ- is equal to the volume (Vi + Vo) of the composite structure obtained by
superposing the two Michell structures S; and OS2 corresponding to the load
systems Fii and FZJ-,' that is,

Vg = V1 + V3 (7)



Application of the Superposition Theorem

The theorem is now used to develop optimum structures for the load
systems of figures 1(a) and 2(a). The load system of figure 1(a), represent-
ing a pure shear beam-type loading, is resolved into two constitutive systems,
as shown in figure 1(b). Bach system lends itself to a solution, in the sense
that there is a definite Michell structure to equilibrate each system. These
structures are shown independently in figure 1(c) and are combined as shown in
figure 1(d) to give the optimum structure for the load system under
consideration.

P

* Y M=PL/2
( | )
(a) Force system 1 (pure shear beam-type loading).

P

* 22 ; 22 M=re/2
C 4 f )

(b) Component systems for above force system.

(e¢) Michell structures for component systems.

(d) Composite structure (optimum structure
for the above force systems).

Figure 1.- Michell structure for a pure shear
beam-type loading.



The volume of each individual unit is (see ref. 9)
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(b) Component systems for above force system.
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(c¢) Michell structures for component systems.
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(d) Composite structure (optimum structure
for above force system),

Figure 2.- Michell structure for an overhang
beam-type loading.
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The volume of the Michell
structure (fig. 1(d)) to carry the
load system of figure 1l(a) is,
then,

ov,

1 1
ﬂld(é?; + 8%5)

The load system of fig-
ure 2(a) is resolved as shown in
figure 2(b). The Michell struc-
ture for each component load
system is shown in figure 2(c
The units are combined as shown
in figure 2(d). The volume of
each unit is (see ref. 9)

1,1
G %)

The volume of the Michell struc-
ture (fig. 2(d)) to carry the load
system of figure 2(a) is

(9)

=z Pl (10)
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THE DEVELOPMENT OF A SYSTEM OF COORDINATE CURVES FOR
MEMBER LAYOUT OF A MICHELL OPTIMUM STRUCTURE

The governing equations for the form of the orthogonal coordinate curves
and the equations of equilibrium of a curvilinear element are presented in
this section. These equations have been derived by Hemp (ref. 5); however,
their derivation will be briefly represented to maintain continuity of thought.
A solution is then obtained to Hemp's governing equations which dictate the
form of the orthogonal coordinate system that satisfies the condition of com-
patibility for the Michell criterion of strain in two dimensions. This solu-
tion gives the layout of coordinate curves which constitute the lines of
principal strain along which the members of the corresponding Michell struc-
ture lie. These curves are then enclosed within a suitable boundary by match-
ing, at the boundary, the forces in the members of the structure and the
external forces acting on the structure (one gets the nature of external
forces on the boundary of the structure). Indirectly, then, one obtains the
force system which the developed Michell structure (the members lie along the
coordinate curves and are represented by the solution obtained from Hemp's
governing equations for the form of Michell structures) equilibrates.
Inversely, one can say that the solution (i.e., a Michell structure) has been
obtained for this force system.

Equations Governing the Form of the Coordinate Curves

The outline of the development of Hemp's governing equations for the
form of the Michell optimum structure is now presented. (For details see
section 3 of ref. 5.) Let x = x(a,B), vy = y(a,B) be a set of orthogonal
coordinate curves representing lines of principal strain. The parametric pair
(a,B) represents curvilinear coordinates in the plane of the rectangular
Cartesian coordinate system. The functions x(«,8) and y(a,B) are continuous
and have first and second derivatives with respect to o and B. Along
a-coordinate curves, o varies and B 1is constant; along PR-coordinate
curves, B varies and o 1is constant. Positive directions along both of
these curves are those along which o and f are increasing. The arc lengths
ds; and dsp along a and B curves are given by

dsy = A(a,B)da, dsp = B(a,B)ap (12)



where

& @,

and ] ? (13?
_[ §> @B> )

TLet V1 and Vo represent the angles made by the positive tangents to
o and B curves, respectively, with the =x axis such that

o
}

W=9z - (14)
It follows that
_dx 1 3x _dax _ 1 x
COS\lIl—a-ST—'A— % 2 COSlIIg—-a-é—z——,']g' B
(15)
, & 1oy ; & 1y
sin ¥y = G- " F 3 sin ¥z = 97 = 5 56

Now
cos @ = cos{¥s - Vy)

sz ay (16)

From equations (13) and (16), the derivatives OV;/da and dVp/dB are given
byl N

Vg _ 1 3 D _
&L_-Bsinw[ﬁ_é_&(}acosw)]

Also, from equations (14) and (17) the following relation can be shown to
exist between A, B, and W:

d 1 OB 3
.a_mAsinG[g-é—B-(Acosm] } BB{Bsnlw[ (BCOSU):I}
(18)

For ® = /2, this relation becomes

For details refer to appendix A of reference 5.

10
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In the curvilinear coordinate system, the deformation is characterized by the
strains eqgq, epps Caf- The expressions for the strains are given by (ref. 5,

p- 59)

_Llou, v oA )
Sac T K 3¢ 7 AB OF
1 v u OB
88 = 5 5¢ * 1B ox $ (20)
_1[B2 <Y_>+é.5 z)
€af T 3 |K Sa \B B OB \A

where u and v are the displacements along o and B curves, respectively.

In the deformed state, the arc lengths ds; and dss are increased by
1+ eqe and 1 + e R? respectively, and the angle ® is deformed from /2
to (x/2) - aaB. Beplace A, B, and T by A(Ll + eqy), B(L + eq ), and
(/2) - 2aB, respectively, in equatlon (18); if the resulting BBuation is
developed correctly to the first order of strain, the equation of compatibil-
ity of strain is obtained as follows:

8 8e3g> seaa aeeaﬁ _ 9 l OB ( _ )
A o OB B aa R Cac ~ BB
> {1 2a 1.5 1A , 2 (LB _ 0
* 55 |5 o5 (G - epp) 5 E55 %) 255\ 5oz s)=0 (21)

Now the Michell criterion of strain, for members carrying strains of opposite
sign, is defined by
oo = € egg = -€ , eqp = O (22)

For this strain condition, the equation of compatibility of strain becomes

$GD-368)- e

It follows from equations (19) and (23) that

11
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- Thus,
% %%‘= -Fy (o)
(25)
Al-?,%=Fz(B)

1 1
where TFi(a), Fo(B) are arbitrary functions and Fi(a), Fo(B) are their deriv-
atives. The following transformation is now introduced:

a = (T) , B = ¢=(B) (26)

where ©®1, O, q)i, and cpé are continuous functions. Further, ¢, and @ are
chosen so that

p1(3) = Fi (28) ,  ¢2(B) = Fa (:F) (27)

where Ffl, Fél are the inverse ?unctions of ¥4, Fo and the upper or lower
sign is taken accordingly as FiFo 1s positive or negative. The transform
of equations (25) can now be written in terms of a and B as follows:

1 0A _ 1 90B _
g5 - Lo =1 (28)
These are the governing equations for the arc lengths A and B of the system
defined by equations (12).

Now, the angles V; and Vo, defining the directions of « and B curves,
are obtained from equations (14) with ©@ = /2, (17) and (28) as follows:

V1 =a+ B, Vo = %-+ a+ P (29)

In order to select a set of orthogonal coordinate curves (12) that satisfy
the strain conditions (22), the corresponding rates of changes of arc lengths
A and B have to satisfy equations (28). When A, B have been found, equa-
tions (12), along with equations (29), can be employed to determine the
equations of the lines of principal strains.

Equations of Equilibrium
The equations derived by Hemp (appendix B, ref. 5) for the equilibrium

of a curvilinear element do by dB are now presented. Let t, and to
denote the thicknesses of the o and B members. Also, let T,;, To be the

12



forces per unit length paraliel to the o and B cuwves and S be the shear
per unit length. TFrom the equilibrium of a curvilinear element do by 4B, the
following equations are obtained:

) ) oA OB
'aE(BTl) +G-,_B.(AS) +YBS —ga—T2=O
(30)
) 0 oA OB
E(BS) +gB-(AT2) —BET:L'*_S.CX—;S =0
For Michell criterion, the shear stress equals zero. Further, from equa-
tions (22) it follows that
Ty = ogtay Te = oata (31)
and hence the equations of equilibrium can be written as follows:
) OB
o (Bogty) - 5&'(0ct2) =0
(32)

g%'(AUctz) - g%'(cttl) =0

Determination of a System of Coordinate Curves and the Development
of the Corresponding Michell Optimum Framework

A solution is now sought to the governing equations (28). Hemp has
obtained a few solutions in the form of certain functions for the arc lengths
A and B and has presented some layouts (i.e., coordinate curves) for the
members of the Michell optimum structures. Herein, solutions to the govern-
ing equations are obtained in terms of different functions for A and B, which
then give us a different layout (i.e., a set of coordinate curves) for the
members of a Michell structure. This layout, then, gives Michell structures
which can equilibrate new force systems; thus, solutions (Michell structures)
are obtained for these new systems. To determine a system of coordinate
curves that satisfy the Michell criterion of strain (22), equations (28) have
to be solved. The following functions for the unit arc lengths A and B
satisfy equations (28):

A =14 cos(a + B)

I

(33)

B =4 sin(a + B)

Equations (15), (29), and (33) then give

x I cos ¥y dsy = UL I cos®(a + B)da

il

sin 2(a + B) + 20 + C1(B)

i3



where ©1(B) is an arbitrary function of B Also,

I cos Vo dsp = -4I sin®(a + B)dB

™
I

-28 + sin 2(a + B) + Co(a)

where Cs(a) is an arbitrary function of «. On identifying the two expres-
sions for x, it is seen that C1(B) is indeed -2B and Co(a) is 2«. Hence,

the expression for x 1is given by

x = 2(a - B) + sin 2(a + B) (34)

Similarly,
y = -cos 2(a + B) (35)

Now, eliminating o and B, the Cartesian forms of the a and B curves (repre-
senting lines of principal strain) for -1 <y <1 are, respectively,

X = =Up + cos™L(-y) + N1 - y& , o curves
(36)

x = ba - cos™(-y) + N1 -y2 , B curves

The above equations represent the coordinate curves for the layout of the
Michell structure. The curves (illustrated in fig. 3) are enclosed in a
rectangular domain -1 <y <1, -t < x <n, and can be used to solve plane
stress problems for rectangular strips loaded with suitable self-equilibrating
forces. The o and B curves are in tension and compression, respectively.
These tension and compression members are indicated in figure 3. From equa-
tions (15) the angles V; and Vo made by the a and B curves with the x

axis are given by

y
f a=o0 f a=7/8 a= /4 f a=7w¢8

o

T 0

-

Fx

<
-

M

o | st

f B=w/a f ;:;m 8

Figure 3.- Coordinate curves forming a Michell structure within a rectangular domain.
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cos Yy = l_éx sin ¥, = |21 ¥

2
(37)
cos Vg = -\/};%—l 5 sin Vp = l—§42

The areas of the members (i.e., thicknesses ti and tp of the o and B
members) of the structure are now determined from the equilibrium of a curvi-
linear element of the structure (egs. (32)) and from the force equilibrium at
the boundary. If o =0 = -0, 1in the equilibrium equations (32) and equa-
tion (34) is used, the equilibrium equations can be written:

\
ot T -y
[(tl+t2)+2(l+y) #] 1—21=O
> (38)
ot
[(tl + tz) - 2(1 - y) ay—ﬂ 1—Zl=o
The solution to the above equaticons is given by
ta = £(x) 75+ &(x)
(39)
te = £(x) [+ - g(x)

l-v

where f(x) and g(x) are arbitrary functions of x. It is seen that y =1
presents a singularity. The functions £(x) and g(x) are determined from the
total force equilibrium on the boundary.

The variation of the forces in the structure for Iocl = Ictl =0 1s
given as: (1) The tangential force per unit length (Txy) is proportional to

£ty cos Uy + te sin Uy = b1 jl—2'1+ to 1—2—1 (40)

where t; and tso are given by equations (39); (ii) the normal force per unit
length parallel to the x axis (Tx) is proportional to

tl cos 11!1 - tg sin \lfl = tl ’]_;z‘ - tg 'l_;x (Ll’l)

(iii) the normal force per unit length parallel to the y axis (Ty) is pro-

portional to
1+ 1 -
t1 sin Y1 - b2 cos Y1 = b1 p T - ta oo (2)

15



asw/4

(a=n/4, B=0)

B=0

Figure 4.- Coordinate curves forming a Michell
structure within a domain enclosed by <, B
curves and a ¥y ordinate.

y
A »A__thﬁx

a=mw/4 —

a=mw/8 —

A

220~ L g=m/4

l—B=37m/8

T

Y

Figure 5.- Coordinate curves forming a Michell
structure within a rectangular domain.
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Although the external forces
carried by the structure should be
self-equilibrating, their distribu-
tion is governed by the distribu-
tion of T,, Ty, Ty, (egs. (40),

Xy
(b1), (42)7.

The above development shows
how the system of coordinate curves
under consideration develops the
Michell optimum structure for a
rectangular domain under a system
of external forces. These coordi-
nate curves could also be enclosed
between an a curve (say B = 0),
a B curve (say a = /L), and a
y ordinate (say x = 0). When
thus bounded, as shown in figure L4,
a concentrated force P at a=gx/k,
B=0(i.e., at x=1+ (x/2),

y = 0) can be equilibrated by means
of normal and tangential forces
distributed along the y ordinate
x = 0.

Alternatively, the following
solutions to equations (29) can be
had:

n

A =1k sin(a + B) (43)
B = -b cos(a + B)

The equations for these curves in
a rectangular Cartesian coordinate
system are given by

b - cos™l(-x) -1 - x2
g + cos™1(-x) - J1i - X?

h3a)

¥

Y

The corresponding curves are illus-
trated in figure 5. In nature,
this system of curves is the sanme
as the one considered earlier
(given by egs. (33)) except for a
90° clockwise rotation about the
origin.



CONSIDERATION OF TWO SPECIFIC ORTHOGONAL COORDINATE SYSTEMS
FOR THE MEMBER LAYOUT OF MICHELL OPTIMUM STRUCTURES

Two specific orthogonal coordinate systems - the dipolar and the
spherical - are selected for the member layout of Michell optimum structures
for each system, and the strain-displacement equations (20) are solved for
the displacements, with the strains eam, epp, and egp corresponding to the
Michell strain eriterion. The system of curves is enclosed within some
regular boundaries and a self-equilibrating system of forces is made to act
along the boundary. A Michell optimum structure then obtains for the selected
force system. The volume of this structure can now be obtained from equa-
tion (1) since the displacements of the points of application of the forces
are determined. Examples of some force systems are presented as applications
of the coordinate systems for member layouts of the Michell optimum
frameworks.

The Dipolar Coordinate System

The dipolar coordinate system, figure 6, is defined by the following
transformation:

a sin B a sinh «
cosh o - cos B

(4k)

cosh o - cos B

where (a,B) represent curvilinear coordinates in the plane of the rectangular
coordinate system and a 1s a constant parameter. The corresponding unit
arc lengths A and B are determined from equations (13) and are obtained as

a
cosh a - cos B ( )

For the above values of A and B, the equation of compatibility of strains,
equation (21), can only be satisfied if (eqq - epp) 1s zero. It follows that
this system only admits of Michell strains of the same sign. The correspond-
ing Michell criterion for strains is taken as

Caq, = EppR = te , Cap = @) ()‘|'6)

Since this system can only admit Michell strains of the same sign, the
resulting layout of the members will give an all-tension or an all-

compression structure. The coordinate curves, along which the members will
lie, dictate the natural boundaries and the force system that can be equi-
librated. Inversely then, a Michell structure is obtained for that force
system. The displacements of the system (obtained by solving the strain-
displacement equations for the strain system of eg. (46)) give the displace-
ments of the points of application of the forces from which the weight of the

7



a curves along which
B is constant

U\

X

Figure 6.- The dipolar coordinate system.

structure is determined. Hence, the strain-displacement equations for the
system will now be solved for the strain pattern of equations (46).

The expressions for strains in this coordinate system are obtained by
substitubting the expressions for A and B from equation (L5) into equa-
tions (20). Then, by employing the Michell criterion defined by equa-
tions (L46), the differential equations for the displacements u and v along
the o and B curves, respectively, are obtained as

18



cosh @ - cos B du sin B
Rttt —_—- — = *e
a aa a
cosh & - cos B ov  sinh o
R _a._B__ = u-i-e> (11-7)
posh o - cos B Ov sinh o cosh a - cos B du sin B -0
— S;-+ v S + - SE-+ u— =
When V = cosh & - cos B, the above system of equations is rewritten as
' gg - gg v = *ae (483)
ov oy
w-a—B--égu—iae (L8b)
d d )
So (yv) + SE (vu) = 0 (48c)
From equations (48a) and (L48b),
0 e
2 o(ya) = 2 L
= (v = o (w) (49)
Now equations (48c) and (L9) give
dZ > d% >
2 (yu) + 5% (Yu) =0  and F (yv) + S5F (yv) =0 (50)
Multiplying equation (L8a) by 1V, differentiating with respect to a, elim-
inating (3/da) (Y¥v) by means of equation (48c), and employing the first of
equations (50) yields a second-order differential equation that contains
derivatives of u with respect to B only:
¥ 2 (b - XL 2 (yu) + <§2—¢> (vu) = 3ae X (51)
op= 3B OB do® da.

Similarly, from equations (48b), (48ec), and the second of equations (50),

19



d>2 U D azw> oy
¥ SoZ (¥v) - 3% Sa (vv) + 555' (vv) = zae Sp (52)

When the general solutions to equations (51) and (52) are obtained, the
resulting expressions for the displacements u and v must be of the form

f1(a)sin B + fo(a)(cos B - sech a) x ae tanh a
ala,p) = nbr e tarh
¥(a,B)
(53)
fa(B)sinh a + fa(B)(cosh a - sec B) yF ae tan B
v(ep) = — ° e renl
¥ep) )

for arbitrary functions fi(a), fola), fa(B), and f4(B). Equations (L43a-c)
now determine the form of the arbitrary functions and yield finally:

N\

(e, p) (k sinh a + 1 cosh a)sin B + (Fae sinh @ + n cosh a)cos B - n
ula = -~ - e -
’ ¥ (a,B)
’
(n sin B - 1 cos B)sinh o + (Fae sin B - k cos B)cosh a + k
o{a,p) = - f s e
V(e,B) )

(5k4)

where k, 1, and n are arbitrary constants.

Equations (54) form the general solutions to the system of equa-
tions (48a-c) or (47). A general solution has been obtained for the displace-
ments of the dipolar coordinate system for the Michell strain condition
defined by equations (46). If the system of curves is enclosed within suit-
able boundaries, a system of forces can be equilibrated. Then the constants
in solutions (54) can be determined from the physical conditions of the
problem. This will now be demonstrated with respect to two applications of
the dipolar system in the development of Michell optimum structures.

Application 1.- For the first application, a region bounded by two non-
concentric circles « = a3 and @ = as is taken (see fig. 7). The loading on
the resulting structure is Taken to consist of uniform external and internal
pressure p; and pe acting on the p boundaries o = 07, @ = as, respec-
tively, as shown in the figure. Both sets of members are in compression. The
general solutions for displacements for the pertinent strain system of
€qa = ~€ = €pp, Sqp = 0, are given by
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u(a,p) = ae sinh o cos B 4+ K sinh o sin B 4+ L cosh o sin B W

+n cosh @ cos B - 1
v
(55)
v(a,B) = ae sin 5 cosh & k(1 - cost cosh a) 1 cos $ sinh o
4+ p Sinh @ sin B J
¥
-l

Figure 7.- Application 1 of the dipolar coordinate system: two nonconcentric circles under
external and internal normal pressure - a candidate for entry body configuration.

The boundary conditions are as follows:
(1) At P(a = ©) for any B direction, u = O.
(i1) Along AB (i.e., for B =0 or n and any ) due to the symmetry

of line AB, the displacement v = 0. At (@,B =mx), the condition v = O
gives (from egs. (55))
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K = -1 sinh o (56)

1 + cosh a

At (a,B = 0), condition v = O gives

K = 1 sinh @ (57)

1l - cosh a
However, since %k and 1 are constants, it follows, from equations (56) and
(57), that
k=1=0 (58)
At (o = »,B), the condition u = O gives
n = -ae (59)

From equations (55) through (59) it follows that the displacements correspond-
ing to the structure and its loading are given by

) 8¢ (sinh @ cos B - cosh @ cos B + 1)
cosh a - cos B

u(a,B)

_ ae . o .
v(a,B) = Sosh G -~ cos B (cosh a sin B - sinh @ sin B)

Once the displacements are known, the solution to the problem is complete, for
its volume can be obtained by means of equation (1). The volume is given by
(for |Gcl = |ot| = o)

voed [lGrasa®)  (eset) |
=0y a=Co
> P
- & u u
2 D) (e d) ] -

where B, obtained by using equations (13), is given by B = (a/cosh a - cos B)
and u is given by equation (60).

Since the application of the dipolar coordinate system in obtaining the
Michell structure for the loading illustrated in figure 7 has been presented,
it would be interesting to-consider some practical use of that load system.
It is conceivable that such a configuration could be used for an entry body.
When thus employed, the inner circle could represent the payload compartment
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which is displaced with respect to the geometric center of the body; the
external and internal pressures, then, would represent the aerodynamic forces
and the inertia forces, respectively. The o members form the structural
members to carry the forces due to the aerodynamic loading. Also, at impact
the o members could buckle and thus act as energy absorbers.

Application 2 (see fig. 8) .- Herein the Michell structure is bounded by
a curves B = Bg and B =z (or the y axis). The loading consists of a
distributed pressure (p;) loading along PQ (B = x) and reacted by normal

P, applied pressure

3 b fy s

- »”~
~a «— P, reactive pressure
— - -— 3= Bo
" -~

74
A ~
u\ =

!,

Figure 8.- Application 2 of the dipolar coordinate system: transmission of applied pressure
from one surface to another of greater surface area.

pressure (ps) along the surface B = Bo: All the members, that is, the «
and the B sets, are in compression. The Michell strain criterion is again
o, = ~€ = epps €xp = O and the corresponding general expressions for the
displacements u and v are given by equations (55). The boundary conditions
are as follows:

(i) Along «
symmetry.

0, for all B (i.e., along the x axis) u = 0 due to

(i1) Along B =x (i.e., the y axis), the displacement v 1is zero.

These boundary conditions give

k=1=n=0 (62)

Thus, the displacements are given by

23



_ ae sinh a cos B

ulao, B
(.,8) -
(63)
v(a,B) _ ae sin B cosh o
¥
The volume of the structure is now given by (for Iccl = |c| = g)

al

* _ 1 v v
A = f[pl dSl ’e—,B:ﬂ: + Pe dSl -e—’B=Bo]

) 5 L=00 .
-2 [ i QB:H + (o %>B=BOJ e (61

a=0

where A = (a/cosh a - cos B) and v 1is obtained from equations (63).

Tt is conceivable that this form of configuration could be used as a
bearing structure for a load acting on a weak material or soil (i.e., one
having a low bearing value). The shape of the outer boundary (B = Bg) along
which the material or soil forces act 1s obtained from the geometry of the
dipolar system for the corresponding applied pressure distribution along
B = x. Along this boundary (B = Bo) ; no shearing forces are developed; con-
sequently the possibility of slip, and hence large settlement is reduced.
The structure then efficiently distributes this load from the bearing area
PQ over a larger area (along the surface of the B = Bo curve) and hence

reduces the tendency of large deformations in the material.

The Spherical Coordinate System for Member Layout

The spherical coordinate system given by the transformation

x =a sin B cos y
y =a sin B sin ¥y (65)
z = cos B

where the curvilinear coordinates o, B, 7y are illustrated in figure 9, is
proposed for the member layout of a Michell optimum framework. Expressions
for displacements are obtained for a Michell strain criterion; they represent
the general solution of the strain-displacement equation for a Michell strain
criterion in a three-dimensional spherical coordinate system. Any self-
equilibrating force system can now be made to act upon a domain enclosing a
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(4
i

spherical system of curves, the proper boundary conditions on the displace-
ments could be imposed, and the volume of the structure could then be
determined.

z
!

y curve
‘_E/(a and 3 constonts)
\

——

Q M —Q curve
\ (B and y constants)
— Y

—
B curve
(a and y constants)

Figure 9.- Spherical coordinate system.

The parameters of the coordinate system are given by
2 2 2m/=n -1
b'd v Z
= “5>+G_>+<B_>}Z} 56
) - - (E (66)

with hps and hs similarly given by differentiation with respect to 8 and 7,
respectively. For the system, represented by equations (65), the parameters

are obtained as follows:

hs = —>— (671)

a sin B

&
i
|.—l
.
5
"
|+
o

The corresponding strain-displacement equations are given by (see p. 5k,
ref. 11)
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dug, d /1 3 <]{> dug, =
oy,
= oug l ug 1
eBB = h2 aB + h2h3u7 ( > + 1’1]_1’12[,1!:I aa <h2> = E a— ; Uy,

6u7 3 '> <j > ouy 1
eyy = ha Dy + hihaug <h<3 * hehsug B\ asinp o & @
cos B
* 2 sin B B > (68)

du oy,
ha EE.__ _ cos BB L7 1 B
eB7_h3aB(h87)+ G L AR R T

3 d
- _h.3_ k=R S S I
_hy D hy _%ug 1 1 Oug
Cap —g-az(haug) +1"1__B_(hlua) Se T e Bt SE )

where Ug, Ug, W, are the displacements along the o, B, and y directions,
respectlvely

For a Michell strain criterion it is necessary that
= fe , epp = *e , ey, = e , eqp = 0 = egy = eyq (69)
7Y p Y 4

The equations (68) are now solved for the following general strain system:
Cqo 2 egp s Syy e = 0 = egy = eya (70)

Tt will, however, be shown that equations (68) are only solvable for certain
relations between eqq, egp, and Syye These relations will then eliminate
some of the eight cases shown in equations (69) and will be the conditions of
compatibility of strain. For the strain system of equation (70), the strain-
displacement equations (68) are as follows:

d
oo (71a)

= e
aa (o700
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3u
15U | YUy _
s T cee (7o)

__asinﬁ%?ﬁu“syuwen (71c)
%%—éuB+%a—u§‘=eaB=O (71£)

Equations (7la), (7lb), and (71lf) contain only displacements u, and ug
and yield the general integrals

Il

u, (@,B,7) = eq,@ + Ca(7)cos B - Cl(7)sin B (72)

ugla,B,7) = (egp - egqlaB - Caly)sin B - Ci(7)cos B - al'(7) (73)

where Ci(7), Ca(7), and 1(y) are arbitrary functions of ¥, and the primes
indicate differentiation with respect to y. When the derivatives of Uy

have been eliminated between equations (71d) and (7le), it is seen that the
function Ci(y) is, in fact, a constant. Equation (7lc) can now be integrated
to yield

uy(&,B,V) = [(eyy - egq)sin B - (eqq - epp)B cos Blay
+ Ca(y) + al(y)cos B + ar(a,B) (74)

with A(a,B) arbitrary. Now equation (7le) shows that

Dy sin 7 + Do cos 7 + Ds (75)

C2(7)

and

ak(B) - Ds (76)

1]

Aa,B)
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where Dj, D>, and Dy are constants, and k is an arbitrary function of B.
Finally, equation (71d) shows that

2(y) = Da sin 7 + Ds cos 7 + Dg (77)
where Da, Ds, Dg are arbitrary constants. Moreover, equation (71d) can be

satisfied if and only if
-e =0 (78)

which is the compatibility condition for the differential system (71). With
the arbitrary constants renamed, the general solution representing the

displacements is written:

€qq® — A cos B+ (Bcos 7 +C sin y)sin B (79a)

]

Uu‘(o“:B:')')

uB(a,B,y) = A sin B + (C cos B + Ea)sin 7 + (B cos B - Da)cos ¥ (79b)

uy(a,B,7) = ay(e77 - eyy)sin B + Fa sin B + (Da cos B - B)sin 7

+ (Ba cos B + C)cos ¥ (79¢)
From equation (78) it is seen that eyy and epg have to be equal in magnitude

as well as in sign eliminating four of the eight cases of equation (69). The
four possible cases are as follows:

e

Coa €Bp 7Y
+e +e +e
+e +e -8 (80)
- - +c
- —-e -e

The term eyy -~ €qo in equation (79c) provides for handling any of the above
four cases.

The formal solution of the spherical coordinste system is now complete;
for once the displacements are known, and the volume can be obtained for a
set of self-equilibrating external forces.

The solution given by equations (79) for considering applications to
some load systems shows that when e y = €aqs equations (79) can represent
the solutions for a uniform radially loaded spherical structure. When
eyy = —€gqs Uy (see eq. (79c)) is a multivalued expression that leads to an
interesting application. Consider a structure with a spherical boundary
surface. Let cuts be made along two longitudinal planes, separated by a
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small angle dy, up to the axis of the sphere. If the portion of the sphere
enclosed between these two planes is removed and the cut surfaces are
rejoined, a structure with initial stresses is obtained. Thus, when

@yy = —€gqq» equations (79) can represent the solution for a structure with a
spherical bounding surface with initial locked stresses in it (i.e., a
prestressed spherical structure) and under a suitable force system.

CONCLUDING REMARKS

The Michell strain criterion has been successfully applied to develop
minimum volume structures for a variety of domains to equilibrate some
interesting force systems of significance to the aeronautics and space
industry.

The indeterminacy of Michell structures was discussed in the first sec-
tion. The utility of the superposition theorem for Michell structures was
presented, and the theorem was proved and applied to the two load systems of
figures 1 and 2. The superposition theorem now makes it possible to solve
a broader spectrum of force systems which by themselves do not have a unique
solution (i.e., do not lend themselves to a unique optimum structure) but, on
resolution into two or more systems, do lend themselves to separate solutions
which can then be superposed.

In the second section the governing equations, developed by Hemp, for
the coordinate curves of the member layout of Michell structures were pre-
sented and two solutions were obtained. These solutions give rise to the
coordinate systems shown in figures 3 and 5 for the member layouts of Michell
structures. These coordinate systems are then applied to offer solutions to
a variety of force systems acting on a plane rectangular domain as well as on
a curvilinear domain as illustrated in figure L.

In the third section, two well-known orthogonal coordinate systems,
namely the dipolar and the spherical systems, were considered for menber
layout of Michell structures. General solutions were obtained for displace-
ments to satisfy Michell strain criterion in the two coordinate systems. Two
interesting structures arise as a result of the application of the dipolar
system; one of them suggests interesting possibilities for an entry body con-
figuration having a displaced center of gravity with respect to the geometric
center, which could be helpful in orienting the body during descent. The
other structure enables a concentrated load to be distributed over a wide
bearing area, thereby reducing the possibility of large deformations of the
bearing material.

For the spherical coordinate system, the general solution of principal

strain-displacement equations has been derived. Applications to physical
problems could further the utility of this solution. It is shown that the
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spherical coordinate system admits solution to the Michell strain criterion
for the four cases listed in equation (80). Some interesting applications of
the solution are discussed.
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